class: title-slide # This is my title: An Excellent Presentation ## AATS Annual Meeting 2021 ### Dr. XYZ ###Associate Professor of xxxx ###University of xxxx ###xxxx, xxxx ###
abc@123.edu --- # Contents of the title slide * The title slide contains information from the yaml. The **yaml** is first part of the Rmarkdown document before the body of the document. * The yaml options for **xaringan** slides provided in this template are title, author, and date. * Apart from the standard yaml options, **autoplay** and **loop** can be used to loop the slides creating a continuous slideshow. * the yaml contains .text-rust[_seal:false_], that way, you can create a new title slide without pulling information from the yaml. --- class: center, middle, chapter # Using this Template --- # Using this Template Details regarding using the xaringan library and this template is available at * (https://bookdown.org/yihui/rmarkdown/xaringan.html) This is a link to the chapter on the **xaringan** library. * (https://slides.yihui.org/xaringan/#1) This is a link to the official documentation on **xaringan**. * (https://github.com/yihui/xaringan/wiki) This is a link to the **xaringan** wiki page. It provides tips regarding use as well as further customisation. * (https://github.com/gnab/remark/wiki) The **remark.js** wiki is a good tool to learn how to make slides. --- # Layout * Simple title, bullet, text layout * Two column with equal column layout * Two column with side-bar and content layout --- # One bullet point at a time * First point -- * Second point -- * Third point --- # Insert graphs <img src="index_files/figure-html/unnamed-chunk-3-1.png" style="display: block; margin: auto;" /> --- # Highlight code * Code can be highlighted using **#<<** * Use [ some R code ] to allow for vertical scrolling of R chunk and results. .pre-large[ ```r # use .pre[some R code] to allow for vertical scrolling of R code chunk *a <- lm(mpg ~ hp, data = mtcars) summary(a) ``` ``` ## ## Call: ## lm(formula = mpg ~ hp, data = mtcars) ## ## Residuals: ## Min 1Q Median 3Q Max ## -5.7121 -2.1122 -0.8854 1.5819 8.2360 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 30.09886 1.63392 18.421 < 2e-16 *** ## hp -0.06823 0.01012 -6.742 1.79e-07 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 3.863 on 30 degrees of freedom ## Multiple R-squared: 0.6024, Adjusted R-squared: 0.5892 ## F-statistic: 45.46 on 1 and 30 DF, p-value: 1.788e-07 ``` ] --- # Whole slide scroll .pre-whole[ ```r s <- survfit(Surv(time, status) ~ sex, data = lung) summary(s) ``` ``` ## Call: survfit(formula = Surv(time, status) ~ sex, data = lung) ## ## sex=1 ## time n.risk n.event survival std.err lower 95% CI upper 95% CI ## 11 138 3 0.9783 0.0124 0.9542 1.000 ## 12 135 1 0.9710 0.0143 0.9434 0.999 ## 13 134 2 0.9565 0.0174 0.9231 0.991 ## 15 132 1 0.9493 0.0187 0.9134 0.987 ## 26 131 1 0.9420 0.0199 0.9038 0.982 ## 30 130 1 0.9348 0.0210 0.8945 0.977 ## 31 129 1 0.9275 0.0221 0.8853 0.972 ## 53 128 2 0.9130 0.0240 0.8672 0.961 ## 54 126 1 0.9058 0.0249 0.8583 0.956 ## 59 125 1 0.8986 0.0257 0.8496 0.950 ## 60 124 1 0.8913 0.0265 0.8409 0.945 ## 65 123 2 0.8768 0.0280 0.8237 0.933 ## 71 121 1 0.8696 0.0287 0.8152 0.928 ## 81 120 1 0.8623 0.0293 0.8067 0.922 ## 88 119 2 0.8478 0.0306 0.7900 0.910 ## 92 117 1 0.8406 0.0312 0.7817 0.904 ## 93 116 1 0.8333 0.0317 0.7734 0.898 ## 95 115 1 0.8261 0.0323 0.7652 0.892 ## 105 114 1 0.8188 0.0328 0.7570 0.886 ## 107 113 1 0.8116 0.0333 0.7489 0.880 ## 110 112 1 0.8043 0.0338 0.7408 0.873 ## 116 111 1 0.7971 0.0342 0.7328 0.867 ## 118 110 1 0.7899 0.0347 0.7247 0.861 ## 131 109 1 0.7826 0.0351 0.7167 0.855 ## 132 108 2 0.7681 0.0359 0.7008 0.842 ## 135 106 1 0.7609 0.0363 0.6929 0.835 ## 142 105 1 0.7536 0.0367 0.6851 0.829 ## 144 104 1 0.7464 0.0370 0.6772 0.823 ## 147 103 1 0.7391 0.0374 0.6694 0.816 ## 156 102 2 0.7246 0.0380 0.6538 0.803 ## 163 100 3 0.7029 0.0389 0.6306 0.783 ## 166 97 1 0.6957 0.0392 0.6230 0.777 ## 170 96 1 0.6884 0.0394 0.6153 0.770 ## 175 94 1 0.6811 0.0397 0.6076 0.763 ## 176 93 1 0.6738 0.0399 0.5999 0.757 ## 177 92 1 0.6664 0.0402 0.5922 0.750 ## 179 91 2 0.6518 0.0406 0.5769 0.736 ## 180 89 1 0.6445 0.0408 0.5693 0.730 ## 181 88 2 0.6298 0.0412 0.5541 0.716 ## 183 86 1 0.6225 0.0413 0.5466 0.709 ## 189 83 1 0.6150 0.0415 0.5388 0.702 ## 197 80 1 0.6073 0.0417 0.5309 0.695 ## 202 78 1 0.5995 0.0419 0.5228 0.687 ## 207 77 1 0.5917 0.0420 0.5148 0.680 ## 210 76 1 0.5839 0.0422 0.5068 0.673 ## 212 75 1 0.5762 0.0424 0.4988 0.665 ## 218 74 1 0.5684 0.0425 0.4909 0.658 ## 222 72 1 0.5605 0.0426 0.4829 0.651 ## 223 70 1 0.5525 0.0428 0.4747 0.643 ## 229 67 1 0.5442 0.0429 0.4663 0.635 ## 230 66 1 0.5360 0.0431 0.4579 0.627 ## 239 64 1 0.5276 0.0432 0.4494 0.619 ## 246 63 1 0.5192 0.0433 0.4409 0.611 ## 267 61 1 0.5107 0.0434 0.4323 0.603 ## 269 60 1 0.5022 0.0435 0.4238 0.595 ## 270 59 1 0.4937 0.0436 0.4152 0.587 ## 283 57 1 0.4850 0.0437 0.4065 0.579 ## 284 56 1 0.4764 0.0438 0.3979 0.570 ## 285 54 1 0.4676 0.0438 0.3891 0.562 ## 286 53 1 0.4587 0.0439 0.3803 0.553 ## 288 52 1 0.4499 0.0439 0.3716 0.545 ## 291 51 1 0.4411 0.0439 0.3629 0.536 ## 301 48 1 0.4319 0.0440 0.3538 0.527 ## 303 46 1 0.4225 0.0440 0.3445 0.518 ## 306 44 1 0.4129 0.0440 0.3350 0.509 ## 310 43 1 0.4033 0.0441 0.3256 0.500 ## 320 42 1 0.3937 0.0440 0.3162 0.490 ## 329 41 1 0.3841 0.0440 0.3069 0.481 ## 337 40 1 0.3745 0.0439 0.2976 0.471 ## 353 39 2 0.3553 0.0437 0.2791 0.452 ## 363 37 1 0.3457 0.0436 0.2700 0.443 ## 364 36 1 0.3361 0.0434 0.2609 0.433 ## 371 35 1 0.3265 0.0432 0.2519 0.423 ## 387 34 1 0.3169 0.0430 0.2429 0.413 ## 390 33 1 0.3073 0.0428 0.2339 0.404 ## 394 32 1 0.2977 0.0425 0.2250 0.394 ## 428 29 1 0.2874 0.0423 0.2155 0.383 ## 429 28 1 0.2771 0.0420 0.2060 0.373 ## 442 27 1 0.2669 0.0417 0.1965 0.362 ## 455 25 1 0.2562 0.0413 0.1868 0.351 ## 457 24 1 0.2455 0.0410 0.1770 0.341 ## 460 22 1 0.2344 0.0406 0.1669 0.329 ## 477 21 1 0.2232 0.0402 0.1569 0.318 ## 519 20 1 0.2121 0.0397 0.1469 0.306 ## 524 19 1 0.2009 0.0391 0.1371 0.294 ## 533 18 1 0.1897 0.0385 0.1275 0.282 ## 558 17 1 0.1786 0.0378 0.1179 0.270 ## 567 16 1 0.1674 0.0371 0.1085 0.258 ## 574 15 1 0.1562 0.0362 0.0992 0.246 ## 583 14 1 0.1451 0.0353 0.0900 0.234 ## 613 13 1 0.1339 0.0343 0.0810 0.221 ## 624 12 1 0.1228 0.0332 0.0722 0.209 ## 643 11 1 0.1116 0.0320 0.0636 0.196 ## 655 10 1 0.1004 0.0307 0.0552 0.183 ## 689 9 1 0.0893 0.0293 0.0470 0.170 ## 707 8 1 0.0781 0.0276 0.0390 0.156 ## 791 7 1 0.0670 0.0259 0.0314 0.143 ## 814 5 1 0.0536 0.0239 0.0223 0.128 ## 883 3 1 0.0357 0.0216 0.0109 0.117 ## ## sex=2 ## time n.risk n.event survival std.err lower 95% CI upper 95% CI ## 5 90 1 0.9889 0.0110 0.9675 1.000 ## 60 89 1 0.9778 0.0155 0.9478 1.000 ## 61 88 1 0.9667 0.0189 0.9303 1.000 ## 62 87 1 0.9556 0.0217 0.9139 0.999 ## 79 86 1 0.9444 0.0241 0.8983 0.993 ## 81 85 1 0.9333 0.0263 0.8832 0.986 ## 95 83 1 0.9221 0.0283 0.8683 0.979 ## 107 81 1 0.9107 0.0301 0.8535 0.972 ## 122 80 1 0.8993 0.0318 0.8390 0.964 ## 145 79 2 0.8766 0.0349 0.8108 0.948 ## 153 77 1 0.8652 0.0362 0.7970 0.939 ## 166 76 1 0.8538 0.0375 0.7834 0.931 ## 167 75 1 0.8424 0.0387 0.7699 0.922 ## 182 71 1 0.8305 0.0399 0.7559 0.913 ## 186 70 1 0.8187 0.0411 0.7420 0.903 ## 194 68 1 0.8066 0.0422 0.7280 0.894 ## 199 67 1 0.7946 0.0432 0.7142 0.884 ## 201 66 2 0.7705 0.0452 0.6869 0.864 ## 208 62 1 0.7581 0.0461 0.6729 0.854 ## 226 59 1 0.7452 0.0471 0.6584 0.843 ## 239 57 1 0.7322 0.0480 0.6438 0.833 ## 245 54 1 0.7186 0.0490 0.6287 0.821 ## 268 51 1 0.7045 0.0501 0.6129 0.810 ## 285 47 1 0.6895 0.0512 0.5962 0.798 ## 293 45 1 0.6742 0.0523 0.5791 0.785 ## 305 43 1 0.6585 0.0534 0.5618 0.772 ## 310 42 1 0.6428 0.0544 0.5447 0.759 ## 340 39 1 0.6264 0.0554 0.5267 0.745 ## 345 38 1 0.6099 0.0563 0.5089 0.731 ## 348 37 1 0.5934 0.0572 0.4913 0.717 ## 350 36 1 0.5769 0.0579 0.4739 0.702 ## 351 35 1 0.5604 0.0586 0.4566 0.688 ## 361 33 1 0.5434 0.0592 0.4390 0.673 ## 363 32 1 0.5265 0.0597 0.4215 0.658 ## 371 30 1 0.5089 0.0603 0.4035 0.642 ## 426 26 1 0.4893 0.0610 0.3832 0.625 ## 433 25 1 0.4698 0.0617 0.3632 0.608 ## 444 24 1 0.4502 0.0621 0.3435 0.590 ## 450 23 1 0.4306 0.0624 0.3241 0.572 ## 473 22 1 0.4110 0.0626 0.3050 0.554 ## 520 19 1 0.3894 0.0629 0.2837 0.534 ## 524 18 1 0.3678 0.0630 0.2628 0.515 ## 550 15 1 0.3433 0.0634 0.2390 0.493 ## 641 11 1 0.3121 0.0649 0.2076 0.469 ## 654 10 1 0.2808 0.0655 0.1778 0.443 ## 687 9 1 0.2496 0.0652 0.1496 0.417 ## 705 8 1 0.2184 0.0641 0.1229 0.388 ## 728 7 1 0.1872 0.0621 0.0978 0.359 ## 731 6 1 0.1560 0.0590 0.0743 0.328 ## 735 5 1 0.1248 0.0549 0.0527 0.295 ## 765 3 1 0.0832 0.0499 0.0257 0.270 ``` ] --- # Two column layout .pull-right[ * Some points * More points * Even more points * The slide is divided into 2 equal parts and text, bullet points, or images can be pasted in either one ] .pull-left[  * the image * another image ] --- # GGplot2 graphs .pull-right[ ```r ggplot(mtcars, aes(x = mpg, y = hp, color = factor(gear))) + geom_point() + scale_color_manual(values = gla) + theme_gla() ``` <!-- --> ] .pull-left[ * ggplot2 graphs can also be placed in the half column ] --- # Context boxes .content-box-blue[This is point 1] -- .content-box-green[This is point 2] -- .content-box-army[This is point 3] -- .blockquote[- CSS & HTML are fantastic - More information ] --- # Change text colors * Using text colors css, we can change the text colors. .text-cobalt[Blue colored text] -- .text-thistle[Thistle colored text] -- ## .text-rust[Rust colored text] - This is a 2nd level header -- .text-moss[Moss colored text] -- * To change the color of italic font _.text-thistle[some thistle colored italic font]_ --- # Animated Graphs * Animated graphs and interactive graphs using plotly and gganimate can be embedded into slides